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Abstract.  A review of statistical models for global optimization is presented. Rationality of the search 
for a global minimum is formulated axiomatically and the features of the corresponding algorithm are 
derived from the axioms. Furthermore the results of some applications of the proposed algorithm are 
presented and the perspectives of the approach are discussed. 
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I. Introduction 

Stochastic functions are used as models of complicated functions with elements of 
uncertainty in hydrodynamics, theory of automatic control, radar theory, etc. 
Some algorithms of global optimization are also based on stochastic functions (see, 
e.g., [3, 6, 7, 4, 10, 11, 8, 1]). However, the use of such models in global 
optimization needed some theoretical justification. The proof of the stability of 
frequencies, as it is supposed in classical statistics, seems to be unrealistic for the 
characteristics of the class of real objective functions. Therefore, a justification of 
such a stochastic approach required the development of a general theory of 
statistical models for global optimization. Stochastic processes with Markovian 
property have been proven to be constructive models for the development of 
one-dimensional algorithms in the papers cited above. However, the use of 
stochastic functions as models for the multi-dimensional case is restricted due to 
numerical problems in inverting the correlation matrices, whose dimension is 
equal to the number of trial points. That is why a generalization of classical 
stochastic models was necessary to simplify the computation of their characteris- 
tics. In this paper a review concentrating on the main problems of the axiomatic 
development of such a theory is presented. 

A model helps to interpret the results of the previous optimization steps and to 
plan the next ones. However, the definition of a rational algorithm remains not 
trivial. The algorithms, which are optimal with respect to the obviously rational 
criteria, are too complicated for the computer realization. If an optimal algorithm 
is simplified or approximated by a computer algorithm, the approximation errors 
remain unclear. An example is the substitution of the optimal algorithm by the 
one-step algorithm. The latter, although obviously simpler than the original one, 
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is not well justified: e.g., a one-step Bayesian algorithm may have a too local 
behaviour in the initial phase of the optimization [9]. Asymptotic features of a 
global algorithm, e.g., the asymptotic rate of convergence, are not fully adequate 
to the real efficiency of the algorithm, since the global search normally is stopped 
far before the asymptotic features could effect. The final refinement of the global 
and main local minima is performed by some well known local techniques defining 
therefore the rate of convergence. Because of the difficulties mentioned above, it 
is reasonable to construct the algorithm axiomatically, formalizing simple and 
intuitively obvious requirements to the algorithm at the current minimization 
step. 

The use of classical stochastic models, e.g., stochastic functions, is constructive 
only in the one-dimensional case. To apply the approach to multidimensional 
problems the one-dimensional algorithms are combined with dimension reduction 
techniques [8]. In the Bayesian approach the optimal algorithms are defined in a 
classical way, but the computer realizations are based on considerable simplifica- 
tions (one-step optimality, turning the complicated formulas for the calculation of 
the characteristics of the stochastic function into simple ones) [5]. 

The axiomatic theory of rational choice allows to construct statistical models 
and optimization algorithms within the framework of a unified approach of 
'average rationality'. Some crucial computational difficulties are removed here, 
but not all of them, of course. Due to the fact, that the methodology of this 
approach is rather different from the customarily accepted one, it may be 
interesting for experts in global optimization to grasp it in the condensed form of 
a review. 

2. The Statistical Model 

Let the unique objective information on the function f(x), x C A C R n, be the 
values of f(-) at the points xi@ A:Yl  = f ( x i ) ,  i = 1 . . . . .  k.  In addition we have 
some subjective information (e.g., from the experience of solving similar problems 
in the past) concerning multimodality and complexity of f ( x ) .  The weakest, but 
still reasonable assumption on available information is the comparability of 
likelihood of the intervals of the possible values f ( x ) ,  x ~ x i, i = 1 . . . . .  k,  often 
called comparat ive probabil i ty  (CP) (see [2]). Let the binary relation CP be given 
and denoted by ~ x, where (a, a ' )  ~ x(b, b ' )  means, that the event f(x) E (a, a')is 
at least as likely as the event f ( x )  E (b,  b ' ) .  The index x may be omitted if it is 
apparent from the context. The impossible event O is introduced formally and 
considered in a way similar to the other events. The event ((a, a ' ) ~ ( b ,  
b ' ) )  ^ ((b, b ' )  ~ x(a, a ' ) )  is denoted as (a, a ')  ~ x(b, b'). The shorter expression 
(a, a ' )  > x(b, b') is used for ((a, a ' )  ~ x(b,  b ' ) )  ^ -n((a, a ' )  ~ x(b, b ' ) ) .  Let the 
point x ~ x i, i = 1 , . . . ,  k be fixed. The information on f( ')  normally does not 
contradict the following assumptions on the rationality of CP: 
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A1. For arbitrary intervals (a, a'),  (b, b')  there holds either (a, a') ~ (b, b') or 
(b, b')  ~ (a, a').  

A2. If (a, a ' ) >  (b, b') and (b, b ' ) 2  (c, c') then (a, a ' ) ~  (c, c'). 
A3. The statement (a, a ' ) >  0 is true if and only if /z[a,  a'] > 0, where tz(-) 

denotes a Lebesgue measure; (a, a ' ) ~  [a, a ' ) -  (a, a ' ] -  [a, a']. 
A4. Let the following relations hold: B = [a, a'] n [b, b'] ~ 0 ,  C = [a, a'] O [c, 

c'] ~ Q , / z (B  U C) = 0. The relation [b, b'] ~ [c, c'] is true if and only if 
[a, a'] U [b, b'] ~ [a, a'] U [c, c']. 

A5. If (a, a ' )  ~> (b, b') > O holds, then al, a2, a < a i < a', i = 1, 2 exist such 
that (a, a l ) -  (a 2, a ' ) -  (b, b'). 

Since in the axiom A1 only simple sets (intervals) are involved in the comparison, 
A1 is weaker than assumed usually. The transitivity axiom A2 is discussed by 
many authors (see [2]) and it is one of the fundamental assumptions regarding the 
rationality of CP. The intuitive acceptability of the axioms A1 and A2 for solving 
complicated optimization problems is shown by the results of psychological 
experiments (summarized in [9]). The axiom A4 expresses the additivity of CP 
and is a normal rationality assumption for CP. The axioms A3 and A5 are specific 
for this approach. The axiom A3 expresses the complexity of the function and 
states that the exact prediction off(x)  is impossible, as well as the choice of an 
interval (a, a ' )  such that t~(a, a ' ) >  0 and the event f ( x ) E  (a, a ' )  is equivalent to 
0 .  The continuity of CP with respect to intervals seems quite natural, the axiom 
A5 expresses this continuity in the most obvious way. The CP, defined by A1-A5 
for intervals, may be extended to the algebra of finite unions of intervals in a 
rather natural way, implying the existence of a unique probability density Px(') 
compatible with CP. Let Xi,  i = 1, 2 denote the finite unions of disjointed 
intervals. The density p(.) is called compatible with ~ if X 1 ~ X2<=>Sx 1 p(t)  dt 
Sx2 p(t)  dt. This result implies the interpretation of an unknown value f (x)  as a 
random variable Yx with probability density Px(') and finally the acceptability of a 
family Y~, x E A ,  x ¢ xi, i = 1 . . . .  k for the statistical model of f(x).  The axioms 
discussed here imply the existence and uniqueness of Px('), however, the con- 
structive form of p~ (.) (i.e., of the probability density and its dependency on x) is 
necessary to construct the optimization algorithms. The results of a psychological 
experiment show, that the CP for researchers and designers solving technical 
optimization problems in their daily work may be approximated with acceptable 
accuracy by means of a Gaussian probability density [9]. 

A stochastic function may be considered as a family of random variables, 
therefore the stochastic functions are a specific case of the models defined above. 
The generalization of axioms on CP for the case of multidimensional intervals (of 
the values of f(.) at finite sets of points in A) formalise similar assumptions and 
imply the existence and uniqueness of a stochastic function compatible with CP. 
However, the reformulation of the axioms is more complicated and not so 
obvious intuitively. 
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The main practical conclusion from the axiomatic theory is the possibility to 
construct well defined statistical models of multimodal functions which are simpler 
from the computational point of view than the stochastic Gaussian functions. 

3. Characteristics of the Statistical Model 

The assumptions regarding the information about f(-) are sufficiently natural and 
imply that the family of Gaussian random variables Yx, x ~ A, x # x i, i = 1 , . . . ,  k 
forms an acceptable model of f(x). For a further characterization of this statistical 
model it is necessary to define the expected value of f(x), which is denoted by 
ink(X, (Xi, Yi), i = 1 , . . . ,  k). Informally mk(X , ") may be termed as the average 
value or the most likely value or the representative value of the function at the 
point x. If Yx corresponds to a random function, then the conditional mean of it 
corresponds to this wording. As shown in [12] such a definition of ink(" ) is of 
interest also when extrapolating under uncertainty independently of the underly- 
ing statistical model. The rationality of the extrapolation can be understood as the 
invariance of the expected value of f(x) with respect to some transformations of 
the available information: 

• invariance with respect to the scale ofmeasuring y;, 
• invariance with respect to the choice of the zero point of measuring Yi, 
• invariance with respect to the numeration of (xi, Yi), and 
• a restriction of the complexity of an extrapolation is formulated as the 

admissibility of data aggregation. 

The strict formulation of the axioms may be found in [12]. The unique 
extrapolator compatible with the axioms is 

k 

mk(x, (Xi, Yi), i = l ,  . . . , k )  =- E YiWi( x, Xj, j = 1 , . . . ,  k ) ,  
i = 1  

where 
The 

of Y~, 

(1) 

the weights w~(x, .) have some natural properties. 
second characteristic of the model Sk(X, (X~, yi), i = 1 , . . . ,  k), the variance 
may be characterized by similar axioms, implying the following expression 

k 

Sk(X, (X,, Yi) ,  i = 1 , . . . ,  k )  = 7k ~ ]l x -- xillwi(x, xj, j = 1 , . . . ,  k ) ,  
i = 1  

where Yk may depend on (xi, Yi), i = 1 , . . .  , k. 
The investigation of expression (1) using the weights given below has shown 

that such an extrapolator is rather precise and that it can be implemented 
efficiently. The weights are: 

w~(x, xj, j = l , . . . , k ) = O ,  i ~ I ( x ) ,  

w~(x, xi, j - - 1 , . . . , k ) = d ( x , x ~ ) /  ~ d(x, x j ) ,  i E I ( x ) ,  
ycl(.) 
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where I(x) is the set of indices of the r nearest neighbours of x, 

d(x,  = e x p ( - c l l x  - xill2)/ll x - x, ll, c > 0 ,  

I['l[ is the Euclidean norm in R ~, r = 5 and the value c = 3.3 is appropriate if R" is 
scaled by normalizing the components of x by the mean-square-root deviations of 
the corresponding components of the vectors x~, i = 1 . . . .  , k. 

The expression of the conditional mean of a Gaussian random field is a special 
case of (1) where the weights are defined by the inversion of the correlation 
matrix. It is interesting to specify this case axiomatically. Two specific axioms 
proposed in [12] imply the expression (1) coinciding with the expression of the 
conditional mean of a Gaussian random field. The latter results show the relations 
between the proposed statistical models and classical ones and express the 
features, which imply the difficulties of numerical realization of the extrapolation. 

4. The Optimization Algorithm 

Assume that the function f (x) ,  x E A C R n, is to be minimized. Let k evaluations 
of f(.)  be given by Yi = f (xi) ,  i=  1 , . . . ,  k. The preceding discussion implies that 
the family of Gaussian random variables Y~, x E A with the probability density 
Px(') depending on xi, y~, i = 1 , . . . ,  k is an acceptable statistical model of f(.). 
The choice of the next point Xk÷ 1 ~ A for evaluation of f ( . )  may be interpreted as 
a choice of a particular probability density P~k÷x(')' If the preference of choosing 
between the two densities Pxl and P~2 satisfies some rationality requirements, it 
may be possible to construct a utility function u(.) compatible with the preference 
of choice between them, i.e., 

P*~ ~ P*2 <::> ~ u(t)P*l(t) dt >- u(t)p~2(t ) dt 

Since the probability densities are Gaussian, i.e., 

px(t) = n(t lmk(x , .), Sk(X, .)) 

these preferences are equivalent to preferences between the vectors (m, s) where 
m denotes the mean value and s 2 the variance of Yx- The construction of a utility 
function u(.) obviously implies the construction of a utility function U(m, s) for 
vectors (m, s), i.e., 

U(m, s) : f+_~ u(t)n(t[m, s) dt 

The axiomatic definition of the preference relation and the corresponding 
interpretation are given in [9]. Here only the ideas of the axioms are presented: 
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• a current observation may be rational at the point x with a large mean value 
m only in the case of a sufficiently large uncertainty measure s, 

• it is not rational to choose a point for current observation with value of f(-) 
which is with guarantee larger than the best value found during the previous 
iterations, 

• the preference relation is continuous with respect to m, 
• the utility function is continuous from the left. 

The unique utility function compatible with these assumptions is u ( t )  = I ( z o k  - t )  

where Zok < min(l~i~k)y i and I(.) is a unit-step function. Therefore, the current 
observation of the minimization algorithm corresponding to all the assumptions is 
defined by the relation xk+ 1 = argmaxx~AP(Y x < z0k). In the one-dimensional 
case the maximum point of the probability P(.) may be expressed by a simple 
formula. In the multidimensional case the problem is not so easy and usually is 
attached by a combination of Monte-Carlo and local techniques. A choice of the 
statistical model and of some parameters of the original algorithm are rather 
arbitrary. Therefore, a high accuracy in solving the auxiliary maximization 
problem is not reasonable. A global optimization algorithm is used to obtain the 
points in a region of attraction of the global minimum, and the refinement of the 
solution is performed by the local algorithm. Therefore a variation of the 
coordinates of a global trial point is negligible. 

The efficiency of the algorithm crucially depends on the transition from the 
global search to the local one. In the algorithm considered here the transition is 
performed if the local inadequacy of the statistical model and the obtained data is 
detected. In the one-dimensional algorithm the transition condition is rested as a 
statistical hypothesis. In the multi-dimensional case it is based on heuristic and 
empiric rules. 

The convergence of the axiomatically defined algorithm is considered for very 
weak assumptions: only the continuity of the objective function is supposed. 
Therefore, the convergence may be guaranteed if the trial points are dense 
everywhere in A. It is not always easy to prove this fact for sophisticated 
algorithms because they place the trial point in the 'promising' subregions of A 
more often than in 'non-promising' ones aiming at efficient search. However, it 
seems reasonable to perform observations (although seldom) in the 'not-promis- 
ing' subregions to be sure not to miss a sharp deep hole (global minimum for the 
'worst case' objective function). 

5. Applications to Optimal Design 

The test results may be summarized as follows: the constructed algorithms are 
very efficient in respect with the number of objective function evaluations 
necessary to find the global minimum. It is interesting to note that even for 
one-dimensional functions with analytical estimates of the Lipschitz constant (or 
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the bound on the second derivative) such an algorithm is more efficient than that 
based on the Lipschitzian model. However, the computer realization of these 
algorithms in the multidimensional case is impossible without time consuming 
auxiliary computations. Therefore, the field of rational applications of the al- 
gorithms is the optimization of expensive (time consuming) multimodal functions 
whose dimensional does not exceed 10 [9]. 

Such problems are quite often in optimal design. An example is the optimal 
design of magnetic deflection system (MDS) for a colour TV. An important 
criterion of MDS quality is given by the aberration of the electron beam, i.e., the 
dispersion of electrons while deflecting them by the MDS. The aberration 
depends on the configuration of the magnetic field. The latter may be defined by a 
choice of the currents in the sections of MDS. Therefore, the minimization of the 
aberration with respect to the currents in the sections of the MDS is one of the 
important parts in the optimal MDS design. The algorithm for the calculation of 
the objective function f(.) (aberration) includes a numerical integration of the 
system of differential equations describing the motion of an electron in the 
magnetic field of the MDS. The computing time of one value of f(.) in the real 
problems often exceeds 20 sec on a BESM-6 computer. An analytical investigation 
of the features of f(-) including the regions of attraction of local minima is 
impossible, because only the computer algorithm for computing the values of f(-) 
is available. The application of gradient type methods to solve the problem is 
difficult. First, the time needed for evaluating only one gradient vector is very 
large, in general n-times 20 sec in case of n decision variables. Second, the errors 
of the computation of the values of f(.) may be too large for acceptable estimate 
of the gradient by means of numerical differentiation. The experiment showed 
that variable metric techniques, which are very efficient in case of analytically 
given test functions, cannot reach an acceptable solution in reasonable time (1-2 
hours). 

The application of well known Nelder-Meed algorithm which is simpler and 
more robust than the gradient type methods, also did not give an acceptable result 
either. Therefore, to solve the problem, global optimization algorithms should be 
used. The comparative analysis showed, that an algorithm based on the axiomatic 
approach is rather efficient [9]. 

The second example of an efficient application of the algorithm constructed 
here is the optimal synthesis of pigmental compositions (colours). The set of 
pigments (whose spectral characteristics are known) should be used to produce a 
colour similar to a given standard colour. There are several criteria of similarity, 
e.g. spectral distance, colour distance, etc. Investigations of real problems with 9 
pigments showed that the solutions obtained by a local algorithm essentially 
depend on the chosen initial point. The process of local descent takes a consider- 
able computing time. The application of our algorithm yields acceptable solutions 
of different versions of the problem within 5-6 minutes [9]. 

Several versions of the algorithm, based on statistical models, are coded in 
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FORTRAN.  Some of them are included in libraries developed at the institute of 
Mathematics and Informatics, Lithuanian Academy of Sciences. 

• 6 .  P e r s p e c t i v e s  

The axiomatic approach to the construction of statistical models and optimization 
algorithms originated as an attempt to achieve rationality of the global search in 
average. It has grown from the Bayesian approach presented in [4], but it is 
different from the latter in the methodology of construction. In the axiomatic 
approach simple (from the computational point of view) expressions of ink(' ), 
sk(- ) are defined as the characteristics of an extrapolator under uncertainty. The 
minimization algorithm is defined axiomatically for the statistical model. In the 
Bayesian approach the optimal algorithm is defined for a stochastic function. 
Further simplifications, necessary for numerical realization, are described in [5]. 
The algorithms based on both approaches are similar concerning their efficiency 
as well as their complexity of realization. Both are oriented towards minimization 
of expensive multimodal functions. 

One of the main problems in the axiomatic approach is the reduction of 
auxiliary computations necessary to implement the algorithm. The amount of 
auxiliary computations is growing very fast while the information stored is 
growing, i.e., the number of iteration is increasing. It may be attractive to use 
qualitatively different information than the values of f(.), e.g., the gradients of 
f( .)  which are very important in local optimization. Known statistical models even 
implicitly do not contain any information on gradients. Therefore it is supposed to 
extend the known system of axioms for ink(-), sk(. ) by postulating the features of 
differentiability in the framework of the statistical model. 

The other direction of development concerns the construction of statistical 
models and optimization algorithms in the presence of noise. The experience of 
local optimization with noise shows that this case is much more complicated than 
the optimization without the noise. One may even consider noisy multimodal 
problems as unsolvable at all. However, the approach based on statistical models 
opens some new possibilities. Since the one-dimensional algorithm in the presence 
of noise has been proved to be quite efficient, one may expect similar efficiency 
for the multidimensional algorithm as well [9]. 

Experts in applied mathematics recently started to extend various methods for 
parallel computers. Some general problems of parallel computing in global 
optimization are discussed in [9]. The parallelization of general algorithms based 
on statistical models is difficult. However, some simple but efficient algorithms 
may be used in parallel schemata, e.g., the one-dimensional algorithm may be 
applied for the multidimensional case by using random search directions, where 
different one-dimensional searches are performed on different processors ex- 
changing some information. The parallelization principle used here is task paral- 
lelism. The code was developed in parallel FORTRAN 77. When a processor 
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becomes idle, a task specified by two points determining the line in A and the best 
value known is sent by the master to the idle processor (worker) who then sends a 
new best point back to the master. It is easy to implement such parallel algorithms 
on a processor farm. The expected speedup and efficiency were obtained, 
however, only after a long investigation. Partly this is due to the novelty of the 
subject, and to the fact that programming parallel algorithms is more difficult than 
programming sequential ones. A fundamental difficulty is given by the limited 
parallelism achievable in the algorithmic parallelization of most sequential al- 
gorithms. Due to the fact that global optimization is suitable for Monte Carlo and 
geometric parallelization, which do not have the drawbacks of algorithmic paral- 
lelization, methods based on these concepts and on task parallelism seem worth 
future investigation. Seemingly, the way to combine mathematical and heuristic 
ideas is most promising in this field. 
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